Day 1
1. Introduction to structural estimation of dynamic discrete choice models
2. Nested fixed point (NFXP) estimator
3. Mathematical programming with equilibrium constraints (MPEC)
Day 2
1. Inversion theorem and CCP estimator
2. Nested pseudo-likelihood (NPL) estimator
3. Bajari, Benkard, and Levin (BBL) estimator
Day 3
1. Dynamic models of equilibrium
2. Stationary equilibrium model of durable goods market
3. Non-stationary equilibrium models
Day 4
1. Berry–Levinsohn–Pakes (BLP) estimator
2. Modelling static games
3. MLE, MPEC, CCP and NPL estimators for static games
Day 5
1. Estimation of dynamic games with MPEC, CCP, NPL estimators
2. Solving dynamic games with multiple equilibria, recursive lexicographical search (RLS)
3. Nested MLE estimator for dynamic directional games with multiple equilibria (NRLS)