Programming and data analytical skills are best learned through practice. The topics are oriented on the modern high-demand programming techniques and concepts:
- Practical and modern introduction to Python:
Python is a powerful high-level programming language that is easy and fast to learn. This part of the course will gently cover fundamental programming concepts. You will learn how to develop your own code for the practical needs as a part of the professional analytical process.
Furthermore, the obtained skills will allow you to migrate to any programming language relatively easy since most of the languages are based on similar paradigms.
Python is not only a perfect base to learn programming, but the most in-demand language in the business-oriented job market. You will learn basic parts of the Python language, packages and libraries that are most required for efficient solving a variety of problems. In addition, you will learn how to combine Python with other analytical tools for the high-level flexibility. These and many other required techniques will be covered in this part of the course.
Applied programming skills will give you a confidence and privilege in the job market and in your future career.
- R-based programming and data analysis:
R is a powerful free software environment to tackle data analysis. Nowadays it has rapidly expended into the enterprise market and good skills in R programming are required for the majority of analytics oriented jobs. R covers all data manipulation, statistical modeling and data visualization techniques that are required in business-oriented data analysis. In this part of the course, you will learn a variety of R-based data processing, visualization and programming techniques. Being designed expressly for data analysis, R became one of the most in-demand languages in the job market. It is extremely popular due to the huge number of open-source packages. The most important and fundamental (must-know) R programming tools and techniques will be covered in this part of the course.
- SQL (Structured Query Language)
SQL is a special-purpose programming language for managing data. It is a "must-know" language for creating, accessing, retrieving and manipulating data in databases. Nowadays, SQL is required to know as well as Python and R for the most of data analysis-oriented jobs. The reason is that most companies and organizations work with big datasets that are managed by relational database management systems (RDBMS) based on the SQL-standards. In this part of the course, students will learn the most important aspects of SQL language.
In the end of the course, students will have practical skills in querying and managing data using SQL.
- Integration of Python, R and SQL
An integrated big data analysis requires knowing how to exchange data and analytical results between different apps. In this part of the course, students will get an overview of how to use Python, R and SQL mutually with different software tools.